اثر ژنوتیپ‌های متفاوت ACE و ACTN-3 بر رشد مهارت‌های حرکتی بنیادی کودکان چهار تا شش‌ساله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری رفتار حرکتی، گروه تربیت‌بدنی و علوم ورزشی، دانشگاه لرستان، ایران

2 استاد رفتار حرکتی، دانشگاه خوارزمی تهران، ایران

چکیده

شناسایی عوامل مؤثر بر رشد مهارت‌های حرکتی بنیادی که به‌عنوان زیر‌ساز مهارت‌های حرکتی پیشرفته درنظر گرفته می‌شود، می‌تواند اهمیت زیادی در شناسایی و هدایت استعداد‌های برتر ورزشی داشته باشد؛ ازاین‌رو، پژوهش حاضر با هدف بررسی اثر ژنوتیپ‌هایACE  وACTN-3  بر رشد مهارت‌های حرکتی بنیادی کودکان انجام شد. جامعة آماری این پژوهش شامل همة کودکان مهد‌کودکی چهار تا شش‌سالة شهر الشتر بود که به‌شکل تصادفی خوشه‌ای تعداد 50 نفر به‌عنوان نمونۀ پژوهش انتخاب شدند. ابزار گردآوری اطلاعات شامل آزمون مهارت‌های حرکتی درشت اولریخ-ویرایش دوم (2000) و استفاده ازPCR برای تعیین ژنوتیپ‌های ACE و ACTN-3 بود. داده‌های پژوهش با استفاده از آزمون‌ تحلیل واریانس یک‌طرفه و آزمون تی مستقل در سطح معناداری P < 0.05 تحلیل شدند. نتایج نشان داد که کودکان برخوردار از آلل D ژن ACE (ژنوتیپ DD یا ID) در مقایسه با کودکان دارای ژنوتیپ II (P < 0.05) و کودکان برخوردار از آلل R ژن ACTN-3 (ژنوتیپ RR یا RX) در مقایسه با کودکان دارای ژنوتیپ  XX(P = 0.000)، از رشد مهارت‌های حرکتی جابه‌جایی بهتری برخوردار بودند، اما هیچ‌کدام از این تفاوت‌ها در رشد مهارت‌های حرکتی کنترل ‌شیء (P > 0.05) مشاهده نشد؛ بنابراین می‌توان گفت که کودکان برخوردار از ژنوتیپ‌های DD یا ID ژن ACE و ژنوتیپ‌های RR یا RX ژن ACTN-3 از سطح رشدی بالاتری در اجرای مهارت‌های حرکتی جابه‌جایی برخوردارند و در صورت فراهم‌بودن شرایط محیطی مناسب، این افراد در آینده نیز قادر به اجرای مهارت‌های ورزشی در سطوح بالای عملکردی خواهند بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of ACE and ACTN-3 Difference Genotypes on Fundamental Movement Skills Development in 4-6 Years Old Children

نویسندگان [English]

  • Shahram Nazarpouri 1
  • Abbas Bahram 2
1 Ph. D. of Motor Behavior, Department of Physical Education and Sport Sciences, Lorestan University, Iran
2 Professor of Motor Behavior, Tehran Kharazmi University, Iran
چکیده [English]

The identification of effective factors on fundamental movement skills, considered as the substructure of advanced movement skills, can be very important in superior sports talents’ identification and guidance. Therefore, the aim of this study was to investigate the effect of ACE and ACTN-3 genotypes on the development of fundamental movement skills in children. The statistical population of this study included 4-6 years old kindergarten children in Aleshtar and 50 of them were selected, using cluster sampling method, as the study samples. The data collection tools included the test of gross motor development (TGMD-2) and PCR for determination of ACE and ACTN-3 genotypes. A one-way analysis of variance and independent- t test at a significance level of P≤ 0.05 was used to analyze the study data. The findings showed that the D-allele of ACE carriers, (DD or ID genotype), had greater development of locomotors movement skills than II genotype carriers (P<0.001), and also ACTN-3 R-allele carriers (RR or RX genotype), had greater development of locomotors movement skills than XX genotype (P<0.000). However, none of these differences was observed in the development of object control motor skills (P>0.05). Therefore, it can be said that the children carrying DD or ID genotype of ACE and RR or RX genotype of ACTN-3 had higher development level in locomotors motor skills performance and will be able to perform sport skills in higher levels if provided with desirable environmental conditions.

کلیدواژه‌ها [English]

  • Genotype
  • Phenotype
  • Sport Gene
  • Motor development
  • Children
  1. Branta C, Haubenstricker J, Seefeldt V. Age changes in motor skills during childhood and adolescence. Exercise and Sport Sciences Reviews. 1984;12:467-520.
  2. Hardy LL, King L, Farrell L, Macniven R, Howlett S. Fundamental movement skills among Australian preschool children. Journal of science and medicine in sport. 2010 Sep 1;13(5):503-8.
  3. O'keeffe S, Harrison A, Smyth P. Transfer or specificity? An applied investigation into the relationship between fundamental overarm throwing and related sport skills. Physical Education and Sport Pedagogy, 2007;12(2):89-102.
  4. Goodway JD, Ozmun JC, Gallahue DL. Understanding motor development: Infants, children, adolescents, adults. Jones & Bartlett Learning; 2019 Oct 15.p,124-36.
  5. Houwen S, Visscher C, Lemmink KA, Hartman E. Motor skill performance of school‐age children with visual impairments. Developmental Medicine & Child Neurology. 2008 Feb;50(2):139-45.
  6. Clark JE, Metcalfe JS. The mountain of motor development: A metaphor. Motor development: Research and reviews. 2002 Jan;2(163-190):183-202.
  7. Stodden DF, Goodway JD, Langendorfer SJ, Roberton MA, Rudisill ME, Garcia C, Garcia LE. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest. 2008 May 1;60(2):290-306.
  8. Payne VG, Isaacs LD. Human motor development: a lifespan approach. London: Routledge; 2017. p,87-92.
  9. Collins M, Posthumus M. Genetics and sports.Landan: Karger Basel; 2009. p,35-42.
  10. Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. Newyork: Human Kinetics; 2004. p, 101-3.
  11. Peeters MW, Thomis MA, Loos RJ, Derom CA, Fagard R, Claessens AL, Vlietinck RF, Beunen GP. Heritability of somatotype components: a multivariate analysis. International journal of obesity. 2007 Aug;31(8):1295-301.
  12. Ellis L, Collins C, Brown J, Pooley W. Is AGT the new gene for muscle performance? an analysis of AGT, ACTN3, PPARA and IGF2 on athletic performance, muscle size and body fat percentage in caucasian resistance training males. J. Athl. Enhanc. 2017;6.
  13. Rankinen T, Roth SM, Bray MS, Loos R, Pérusse L, Wolfarth B, Hagberg JM, Bouchard C. Advances in exercise, fitness, and performance genomics. Medicine & Science in Sports & Exercise. 2010 May 1;42(5):835-46.
  14. Moran CN, Vassilopoulos C, Tsiokanos A, Jamurtas AZ, Bailey ME, Montgomery HE, Wilson RH, Pitsiladis YP. The associations of ACE polymorphisms with physical, physiological and skill parameters in adolescents. European journal of human genetics. 2006 Mar;14(3):332-9.
  15. Moran CN, Yang N, Bailey ME, Tsiokanos A, Jamurtas A, MacArthur DG, North K, Pitsiladis YP, Wilson RH. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. European Journal of Human Genetics. 2007 Jan;15(1):88-93.
  16. Tobina T, Michishita R, Yamasawa F, Zhang B, Sasaki H, Tanaka H, Saku K, Kiyonaga A. Association between the angiotensin I-converting enzyme gene insertion/deletion polymorphism and endurance running speed in Japanese runners. The Journal of Physiological Sciences. 2010 Sep;60(5):325-30.
  17. Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON, Mozhayskaya IA, Vinogradova OL, Astratenkova IV, Montgomery HE, Rogozkin VA. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Human genetics. 2009 Dec 1;126(6):751.
  18. Ahmetov II, Gavrilov DN, Astratenkova IV, Druzhevskaya AM, Malinin AV, Romanova EE, Rogozkin VA. The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. The journal of physiological sciences. 2013 Jan 1;63(1):79-85.
  19. Erskine RM, Williams AG, Jones DA, Stewart CE, Degens H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scandinavian journal of medicine & science in sports. 2014 Aug;24(4):642-8.
  20. Yang R, Shen X, Wang Y, Voisin S, Cai G, Fu Y, Xu W, Eynon N, Bishop DJ, Yan X. ACTN3 R577X gene variant is associated with muscle-related phenotypes in elite Chinese sprint/power athletes. Journal of strength and conditioning research. 2017 Apr 1;31(4):1107-15.
  21. Papadimitriou ID, Lucia A, Pitsiladis YP, Pushkarev VP, Dyatlov DA, Orekhov EF, Artioli GG, Guilherme JP, Lancha AH, Ginevičienė V, Cieszczyk P. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC genomics. 2016 Dec;17(1):1-8.
  22. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. The Journal of clinical investigation. 1990 Oct 1;86(4):1343-6.
  23. Reneland R, Lithell H. Angiotensin-converting enzyme in human skeletal muscle. A simple in vitro assay of activity in needle biopsy specimens. Scandinavian journal of clinical and laboratory investigation. 1994 Jan 1;54(2):105-11.
  24. Gordon SE, Davis BS, Carlson CJ, Booth FW. ANG II is required for optimal overload-induced skeletal muscle hypertrophy. American Journal of Physiology-Endocrinology And Metabolism. 2001 Jan 1;280(1):E150-9.
  25. Williams AG, Day SH, Folland JP, Gohlke P, Dhamrait S, Montgomery HE. Circulating angiotensin converting enzyme activity is correlated with muscle strength. Medicine and science in sports and exercise. 2005 Jun 1;37(6):944-8.
  26. Folland J, Leach B, Little T, Hawker K, Myerson S, Montgomery H, Jones D. Angiotensin‐converting enzyme genotype affects the response of human skeletal muscle to functional overload. Experimental Physiology. 2000 Sep;85(5):575-9.
  27. Giaccaglia V, Nicklas B, Kritchevsky S, Mychalecky J, Messier S, Bleecker E, Pahor M. Interaction between angiotensin converting enzyme insertion/deletion genotype and exercise training on knee extensor strength in older individuals. International journal of sports medicine. 2008 Jan;29(01):40-4.
  28. Pescatello LS, Kostek MA, Gordish-Dressman H, Thompson PD, Seip RL, Price TB, Angelopoulos TJ, Clarkson PM, Gordon PM, Moyna NM, Visich PS. ACE ID genotype and the muscle strength and size response to unilateral resistance training. Medicine & Science in Sports & Exercise. 2006 Jun 1;38(6):1074-81.
  29. Nazarov IB, Woods DR, Montgomery HE, Shneider OV, Kazakov VI, Tomilin NV, Rogozkin VA. The angiotensin converting enzyme I/D polymorphism in Russian athletes. European Journal of Human Genetics. 2001 Oct;9(10):797-801.
  30. Woods D, Hickman M, Jamshidi Y, Brull D, Vassiliou V, Jones A, Humphries S, Montgomery H. Elite swimmers and the D allele of the ACE I/D polymorphism. Human genetics. 2001 Mar 1;108(3):230-2.
  31. Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, Price TB, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. Journal of Applied Physiology. 2005 Jul;99(1):154-63.
  32. Charbonneau DE, Hanson ED, Ludlow AT, Delmonico MJ, Hurley BF, Roth SM. ACE genotype and the muscle hypertrophic and strength responses to strength training. Medicine and science in sports and exercise. 2008 Apr;40(4):677.
  33. Pereira A, Costa AM, Leitão JC, Monteiro AM, Izquierdo M, Silva AJ, Bastos E, Marques MC. The influence of ACE ID and ACTN3 R577X polymorphisms on lower-extremity function in older women in response to high-speed power training. BMC geriatrics. 2013 Dec;13(1):1-8.
  34. Scott RA, Moran C, Wilson RH, Onywera V, Boit MK, Goodwin WH, Gohlke P, Payne J, Montgomery H, Pitsiladis YP. No association between Angiotensin Converting Enzyme (ACE) gene variation and endurance athlete status in Kenyans. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2005 Jun 1;141(2):169-75.
  35. McCauley T, Mastana SS, Hossack J, MacDonald M, Folland JP. Human angiotensin‐converting enzyme I/D and α‐actinin 3 R577X genotypes and muscle functional and contractile properties. Experimental Physiology. 2009 Jan 1;94(1):81-9.
  36. Kim K, Ahn N, Park J, Koh J, Jung S, Kim S, Moon S. Association of angiotensin-converting enzyme I/D and α-actinin-3 R577X genotypes with metabolic syndrome risk factors in Korean children. Obesity research & clinical practice. 2016 Sep 1;10:S125-32.
  37. Thomis MA, Huygens W, Heuninckx S, Chagnon M, Maes HH, Claessens AL, Vlietinck R, Bouchard C, Beunen GP. Exploration of myostatin polymorphisms and the angiotensin-converting enzyme insertion/deletion genotype in responses of human muscle to strength training. European journal of applied physiology. 2004 Jul;92(3):267-74.
  38. Coelho DB, Pimenta E, Rosse IC, Veneroso C, Pussieldi G, Becker LK, Carvalho MR, Silami-Garcia E. Angiotensin-converting enzyme (ACE-I/D) polymorphism frequency in Brazilian soccer players. Applied Physiology, Nutrition, and Metabolism. 2016;41(6):692-4.
  39. Dionísio TJ, Thiengo CR, Brozoski DT, Dionísio EJ, Talamoni GA, Silva RB, Garlet GP, Santos CF, Amaral SL. The influence of genetic polymorphisms on performance and cardiac and hemodynamic parameters among Brazilian soccer players. Applied Physiology, Nutrition, and Metabolism. 2017;42(6):596-604.
  40. North KN, Beggs AH. Deficiency of a skeletal muscle isoform of α-actinin (α-actinin-3) in merosin-positive congenital muscular dystrophy. Neuromuscular Disorders. 1996;6(4):229-35.