نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری رفتار حرکتی، دانشگاه خوارزمی
2 استادیار بیومکانیک ورزشی، پژوهشگاه تربیتبدنی و علوم ورزشی
3 استاد رفتار حرکتی، دانشگاه خوارزمی
چکیده
هدف از انجام پژوهش حاضر، استفاده از روشی نوین مبتنیبر تکنیکهای شبکههای اجتماعی برای شناسایی نقشههای خودسازمانی در تیمهای فوتبال بود. نوع پژوهش مشاهدهای بود و براساس دادههای استخراجشده از سایت فیفا، بعد از هر بازی شاخصهایشبکه در دو سطح میکرو و ماکرو سازماندهی شدند و سه بازی رسمی تیم ملی فوتبال ایران در جام جهانی 2018 تحلیل شدند. درمجموع، 517 فاز هجومی در سه بازی تحلیل شدند. برای هر فاز هجومی یک سری ماتریکسهای مجاورت ایجاد شدند که برایناساس، مقادیر چگالی، ضریب خوشهبندی و مرکزیت بازی براساس موقعیت نسبی بازیکن در زمین در دو سطح با استـفـاده از نـرمافـزار Nod XL تحلیل شدند. نتایج حاصل توضیحی را برای عملکرد تاکتیکی و ویژگیهای شبکههای تیم ملی ایران در این بازیها فراهم کرد و مقادیر پایین چگالی و ضریب خوشهبندی بر وجود راهحلهای تاکتیکی ضعیف در فاز هجومی دلالت داشتند. بهطورکلی، یافتههای این پژوهش راهبردهایی عملیاتی را فراهم میکنند که بتوان ازطریق آنها ساختار شبکة تیمی و شاخصهای آن را در تیمهای فوتبال بررسی کرد و بتوان به مربیان در درک ویژگیهای رفتار تیمی، بهبود تصمیمگیری درحین مسابقه و ارائة پروتکلهای تمرینی مناسب کمک کرد.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Identifying Self-Organization Maps in the Iranian National Soccer Team from the Perspective of Social Networking Theory: An Analysis of the offensive Performance in the 2018 World Cup Matches
نویسندگان [English]
- Mohsen Mohammadi 1
- Ali Sharifnezhad 2
- Abbas Bahram 3
1 Ph.D. Student in Motor Behavior, Kharazmi University
2 Assistant Professor of Sport Bio Mechanic, Sport Sciences Research Institute
3 Professor of Motor Behavior, Kharazmi University
چکیده [English]
The purpose of this study was to use a new method based on social networking techniques to identify self-organizing maps in football teams. The research approach was observational. Based on the data extracted from the FIFA site, after each game, network indicators were organized at two levels of micro and macro, and three official matches of the national football team of Iran were analyzed in the 2018 World Cup. Based on Available Data The network indicators were organized at two levels of micro and macro, and three official matches of the Iranian national team were analyzed in the 2018 World Cup. A total of 517 offensive phases were analyzed in three games. For each attacking phase, a series of proximity matrices was created, which analyzed the density, clustering and game center based on the relative position of the player in the field at two levels using the Nod XL software. The results provided explanations for the tactical performance and features of the Iranian national team networks in these games, and low levels of density and clustering coefficients indicated weak tactical solutions in the offensive phase. The result is a comprehensive explanation for the tactical team performance. Iran nationalized in these games. In general, the findings of this study provide operational strategies that can be used to examine the structure of the team network and its indicators in football teams, and to educate the instructors in understanding the characteristics of teamwork, improving decision making during the match, and providing a protocol Appropriate training exercises.
کلیدواژهها [English]
- Social Networks
- Self-Organized Maps
- Team Synergy
- Complex Systems
- Graph Theory
- Rice E, Yoshioka-Maxwell A. Social network analysis as a toolkit for the science of social work. sswr. 2015; 6(3):369-83.
- Araújo D, Bourbousson J. Theoretical perspectives on interpersonal coordination for team behavior. Interpersonal coordination and performance in social systems. 2016:17-32.
- Ribeiro J, Silva P, Duarte R, Davids K, Garganta J. Team sports performance analysed through the lens of social network theory: implications for research and practice. Sports Med. 2017;47(9):1689-96.
- Araújo D, Silva P, Davids K. Capturing group tactical behaviors in expert team players. Rotledge Handbook of Sport Expertise: Routledge. 2015.209-217
- Passos P, Araújo D, Volossovitch A. Performance analysis in team sports: Taylor & Francis; New York; 2016. 4-20
- Silva P, Garganta J, Araújo D, Davids K, Aguiar P. Shared Knowledge or Shared Affordances? Insights from an Ecological Dynamics Approach to Team Coordination in Sports. Sports Med. 2013;43(9):765-72.
- Araújo D, Davids K. Team synergies in sport: theory and measures. fpsyg. 2016;7:1449.
- Steiner S, Macquet A-C, Seiler R. An Integrative Perspective on Interpersonal Coordination in Interactive Team Sports. fpsyg. 2017;8:1440.
- Warner S, Bowers MT, Dixon MA. Team dynamics: A social network perspective. JSM. 2012;26(1):53-66.
- Den Hartigh RJ, Van Dijk MW, Steenbeek HW, Van Geert PL. A dynamic network model to explain the development of excellent human performance. fpsyg. 2016;7:532.
- Cummings JN, Cross R. Structural properties of work groups and their consequences for performance. Social networks. 2003;25(3):197-210.
- Gaston ME, DesJardins M. The effect of network structure on dynamic team formation in multi‐agent systems. Computational Intelligence. 2008;24(2):57-122.
- Balkundi P, Harrison DA. Ties, leaders, and time in teams: Strong inference about network structure’s effects on team viability and performance. Academy of Management Journal. 2006;49(1):49-68.
- Grund TU. Network structure and team performance: The case of English Premier League soccer teams. Social Networks. 2012;34(4):682-90.
- Clemente FM, Martins FML, Couceiro MS, Mendes RS, Figueiredo AJ. A network approach to characterize the teammates’ interactions on football: A single match analysis. Cuadernos de Psicología del Deporte. 2014;14(3):141-8.
- Lusher D, Robins G, Kremer P. The application of social network analysis to team sports. Measurement in physical education and exercise science. 2010;14(4):211-24.
- Gama J, Passos P, Davids K, Relvas H, Ribeiro J, Vaz V, et al. Network analysis and intra-team activity in attacking phases of professional football. International Journal of Performance Analysis in Sport. 2014;14(3):692-708.
- Passos P, Davids K, Araújo D, Paz N, Minguéns J, Mendes J. Networks as a novel tool for studying team ball sports as complex social systems. jsams. 2011;14(2): 170-6.
- Passos P, Davids K, Chow JY. Interpersonal Coordination and Performance in Social Systems: Routledge; New York; 2016: 126-40.