تأثیر خودمدل‌سازی پیش‌خوراندی در ترکیب مشاهده ‌عمل و تصویرسازی حرکتی بر خودکارآمدی و یادگیری پرتاب آزاد بسکتبال در کودکان

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه رفتار حرکتی و مدیریت ورزشی، دانشکده علوم ورزشی، دانشگاه اصفهان، اصفهان، ایران

چکیده
پژوهش حاضر با هدف تعیین تأثیر مدل‌سازی پیش‌خوراندی و غیرپیش‌خوراندی در ترکیب مشاهده‌ عمل و تصویرسازی حرکتی هم‌زمان و متناوب بر یادگیری و خودکارآمدی پرتاب آزاد بسکتبال در کودکان انجام‌ شد. تعداد 72 دانش‌آموز پسر با میانگین سنی 12/1±63/11 سال که توانایی تصویرسازی داشتند، به صورت نمونه‌گیری دردسترس انتخاب شدند و به صورت تصادفی در شش گروه خودمدل‌سازی پیش‌خوراندی (مشاهده و تصویرسازی هم‌زمان و متناوب)، خودمدل‌سازی غیرپیش‌خوراندی (مشاهده و تصویرسازی هم‌زمان و متناوب) و مدل ماهر (مشاهده و تصویرسازی هم‌زمان و متناوب) تقسیم شدند. پس از پیش‌آزمون پرتاب آزاد و خودکارآمدی، شرکت‌کنندگان سه جلسه در هفته، هر جلسه با 40 کوشش به مدت شش هفته، تمرین کردند. در گروه‌های خودمدل‌سازی پیش‌خوراندی، شرکت‌کنندگان فیلم ویرایش‌شده خود و در گروه‌های خودمدل‌سازی غیرپیش‌خوراندی، شرکت‌کنندگان فیلم پرتاب واقعی خود و در گروه مدل ماهر، فیلم پرتاب فرد ماهر را مشاهده کردند و به روش پتلپ تصویرسازی هم‌زمان و متناوب انجام ‌دادند. پس از آخرین جلسه، پس‌آزمون و یک هفته بعد آزمون یادداری و انتقال گرفته ‌شد. از روش تحلیل واریانس مختلط برای تحلیل داده‌ها استفاده‌شد. یافته‌ها نشان داد، میانگین امتیاز پرتاب آزاد بسکتبال و خودکارآمدی گروه‌های پیش‌خوراندی و ماهر به‌ طور معناداری (001/0=P) بیشتر از گروه‌های غیرپیش‌خوراندی و میانگین امتیازات گروه تصویرسازی و مشاهده هم‌زمان پیش‌خوراندی به طور معناداری (01/0=P)  بیشتر از میانگین امتیاز گروه مشاهده و تصویرسازی هم‌زمان ماهر بود. براساس یافته‌ها، مربیان می‌توانند با استفاده از خودمدل‌سازی در تمرینات ترکیب مشاهده‌ عمل و تصویرسازی حرکتی به بهبود خودکارآمدی و عملکرد حرکتی از طریق الگودهی مثبت کمک‌ک نند

کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Effect of Feedforward Self-modeling in Combining Action Observation and Motor Imagery on Self-Efficacy and Learning Basketball Free Throws in Children

نویسندگان English

Abdolreza Heidari
Mehdi RafeiBoroujeni
Maryam Nezakatalhosseini
Department of Motor Behavior and Sport Management, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
چکیده English

 
Background and Purpose
Action observation and motor imagery (AOMI) is a combined motor simulation technique wherein individuals simultaneously observe an action and imagine performing it. This dual engagement has been shown to facilitate motor learning and performance more effectively than either technique alone. Presenting the movement via high-resolution video enhances the clarity of visual information, allowing individuals to allocate cognitive resources more efficiently and synchronize imagined motor sensations with observed actions. This synergy strengthens motor skill acquisition by reinforcing the neural representation of movement. Moreover, utilizing accurate and context-relevant models enables learners to better interpret and internalize movement patterns, promoting improved skill acquisition and retention.
Feedforward video self-modeling, a technique displaying oneself performing at a level not yet achieved, represents a promising variation within AOMI interventions. This study aimed to investigate the effect of feedforward self-modeling combined with action observation and motor imagery on self-efficacy and the learning of basketball free throws in children.
Methods
Two hundred and ten male students in Shahinshahr, Isfahan were initially assessed using the Children’s Motor Imagery Questionnaire (CMIQ). From this cohort, seventy-two students (mean age: 11.63 ± 1.12 years) were selected through convenience sampling based on CMIQ scores. These participants were randomly assigned to six groups:

Feedforward self-modeling with simultaneous AOMI
Feedforward self-modeling with alternating AOMI
Non-feedforward self-modeling with simultaneous AOMI
Non-feedforward self-modeling with alternating AOMI
Skilled model with simultaneous AOMI
Skilled model with alternating AOMI

Written informed consent was obtained from participants and their parents. Prior to intervention, participants completed a self-efficacy questionnaire.
All participants undertook a 10-hour motor imagery training program. Subsequently, a qualified coach instructed the group on basketball free throws. Scoring criteria for the free throw test were explained, and initial performance was recorded as two blocks of ten free throws.
For the feedforward and non-feedforward self-modeling groups, basketball free throws were video-recorded. Videos for feedforward groups were edited to display the participants executing throws with enhanced skill quality.
During the six-week intervention, participants practiced free throws three times per week, completing 40 attempts per session. Feedforward self-modeling groups watched their edited videos and engaged in simultaneous or alternating motor imagery (MI) using the PETTLEP model. Non-feedforward self-modeling groups viewed unedited videos of their actual throws, while skilled model groups observed expert performances, pairing these with PETTLEP-guided MI.
Post-intervention testing was conducted immediately after the final session, with retention and transfer tests administered after one week. Data were analyzed via mixed-model analysis of variance (ANOVA).
 
Results
Mean basketball free throw scores for the experimental and control groups are shown in Figure 1 for the pretest, posttest, retention, and transfer tests.
 

Figure 1 – The mean Basketball free throw score in different tests of the research
 
Results
Figure 1 illustrates mean basketball free throw scores for each group across pre-test, post-test, retention, and transfer assessments, showing improvements from all modeling conditions.
Imagery ability questionnaire analysis revealed no significant group differences in internal imagery (F(5,71) = 0.656, p = 0.658), external imagery (F(5,71) = 1.469, p = 0.212), or kinesthetic imagery (F(5,71) = 1.995, p = 0.091). Following exercise sessions, participants self-reported MI engagement and completed imagery fidelity assessments. Multivariate ANOVA confirmed no significant between-group differences in overall imagery ability.
Mixed-design ANOVA for basketball free throw scores demonstrated significant main effects for time (F(3,198) = 27.83, p = 0.001) and group (F(5,66) = 29, p = 0.001), but no significant group × time interaction (F(15,198) = 2.93, p = 0.14). Post hoc testing indicated superior performance in the feedforward self-modeling simultaneous AOMI (p = 0.001), feedforward alternating AOMI (p = 0.001), skilled model simultaneous AOMI (p = 0.001), and skilled model alternating AOMI (p = 0.001) groups relative to non-feedforward simultaneous and alternating AOMI groups. Additionally, feedforward simultaneous AOMI outperformed skilled model simultaneous AOMI (p = 0.01).
Similarly, mixed-design ANOVA for self-efficacy revealed significant main effects for time (F (2,132) = 10.02, p = 0.001) and group (F(5,66) = 28.09, p = 0.001), with no interaction effect (F (10,132) = 0.65, p = 0.6). Post hoc analyses showed self-efficacy improvements in feedforward simultaneous and alternating AOMI and skilled model simultaneous and alternating AOMI groups compared to non-feedforward groups (all p = 0.001).
 
Conclusion
Across all groups, mean basketball free throw scores improved from pre-test to post-test, retention, and transfer phases. Scott et al. (2020) demonstrated that combining action observation and motor imagery enhances movement practice efficacy in children with diverse motor abilities beyond either method alone. This synergy enhances attentional focus and kinematic processing of observed movements, facilitating superior learning outcomes.
Research in observational learning emphasizes the model’s characteristics—including skill similarity to the learner and distinction between self and other—as determinants of performance and motor skill acquisition. Self-modeling videos within an AOMI framework likely bolster performance and self-efficacy by allowing individuals to observe themselves performing successfully beyond their current skill level. This dual engagement creates a unique sensorimotor experience that transcends conventional practice conditions, enabling acquisition of proficient motor skills.
 
Article Message
This study demonstrates that combining action observation with motor imagery (simultaneously or alternately) significantly enhances motor skill performance and self-efficacy in children. Practitioners, including physical education teachers and coaches, are encouraged to integrate diverse AOMI protocols into training regimens. Moreover, sports coaches can optimize self-modeling interventions by employing advanced video editing techniques. Incorporating feedforward video self-modeling together with AOMI yields greater improvement in basketball free throw performance than strategies relying solely on skilled or non-feedforward self-modeling.
Ethical Considerations
This study was conducted with approval from the University of Isfahan Ethics Committee (Code: IR.UI.REC.1403.047). Informed consent was obtained from all participants and their guardians. Confidentiality was rigorously maintained.
Authors’ Contributions
Mehdi RafeiBoroujeni, Abdalreza Heidary, and Maryam Nezakatalhosaini conceptualized the study. Data collection was performed by Abdalreza Heidary; data analysis was led by Mehdi RafeiBoroujeni. Manuscript drafting was conducted by Abdalreza Heidary and Mehdi RafeiBoroujeni. Review and editing were performed by all three authors. Literature review was carried out collaboratively. Mehdi RafeiBoroujeni supervised and coordinated all research activities.
Conflict of Interest
The authors declare no conflicts of interest relevant to this study’s research, authorship, or publication.
Acknowledgments
The authors express heartfelt appreciation to all participating children for their commitment, as well as those who provided guidance and support throughout the research process.

کلیدواژه‌ها English

Action Representation, Kinesthetic Motor Imagery, Visual Guidance, Motivation
1.     Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1):S103-S9. https://doi.org/10.1006/nimg.2001.0832   
2.     Ste-Marie DM, Lelievre N, St. Germain L. Revisiting the applied model for the use of observation: a review of articles spanning 2011–2018. Research Quarterly for Exercise and Sport. 2020;91(4):594-617. https://doi.org/10.1080/02701367.2019.1693489
3.     Kim T. Action observation and motor imagery as a cognitive intervention. Changes in perceptual-cognitive and skill performance following training. Universität Bielefeld; 2021.
4.     Rizzolatti G, Fabbri-Destro M, Nuara A, Gatti R, Avanzini P. The role of mirror mechanism in the recovery, maintenance, and acquisition of motor abilities. Neuroscience & Biobehavioral Reviews. 2021;127:404-23. https://doi/10.1016/j.neubiorev.2021.04.024
5.     Magill R, Anderson DI. Motor learning and control. New York : cGraw-Hill Publishing; 2010.
6.     Hebert E. The effects of observing a learning model (or two) on motor skill acquisition. Journal of Motor Learning and Development. 2018;6(1):4-17. https://doi.org/10.1123/jmld.2016-0037
7.     Gatti R, Tettamanti A, Gough P, Riboldi E, Marinoni L, Buccino G. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study. Neuroscience Letters. 2013;540:37-42. https://doi.org/10.1016/j.neulet.2012.11.039
8.     Eaves DL, Behmer Jr L, Vogt S. EEG and behavioural correlates of different forms of motor imagery during action observation in rhythmical actions. Brain and Cognition. 2016;106:90-103. https://doi.org/10.1016/j.bandc.2016.04.013
9.     Bach P, Frank C, Kunde W. Why motor imagery is not really motoric: Towards a re-conceptualization in terms of effect-based action control. Psychological Research. 2024;88(6):1790-804. https://doi.org/10.1007/s00426-023-01921-w
10.   Scott MW, Emerson JR, Dixon J, Tayler MA, Eaves DL. Motor imagery during action observation enhances imitation of everyday rhythmical actions in children with and without developmental coordination disorder. Human Movement Science. 2020;71:102620. https://doi.org/10.1016/j.humov.2020.102620
11.   Meers R, Nuttall HE, Vogt S. Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery. Cortex. 2020;126:322-33. https://doi.org/10.1016/j.cortex.2020.01.012 
12.   Scott M, Taylor S, Chesterton P, Vogt S, Eaves DL. Motor imagery during action observation increases eccentric hamstring force: an acute non-physical intervention. Disability and Rehabilitation. 2018;40(12):1443-51. https://doi.org/10.1080/09638288.2017.1300333    
13.   Romano-Smith S, Wood G, Wright D, Wakefield C. Simultaneous and alternate action observation and motor imagery combinations improve aiming performance. Psychology of Sport and Exercise. 2018;38:100-6. https://doi/10.1016/j.psychsport.2018.06.003
14.   Choi J-B, Yang S-W, Ma S-R. The effect of action observation combined with motor imagery training on upper extremity function and corticospinal excitability in stroke patients: a randomized controlled trial. International Journal of Environmental Research and Public Health. 2022;19(19):12048. https://doi.org/10.3390/ijerph191912048
15.   Chye S, Valappil AC, Knight R, Greene A, Shearer D, Frank C, et al. Action observation perspective influences the effectiveness of combined action observation and motor imagery training for novices learning an Osoto Gari judo throw. Scientific Reports. 2024;14(1):19990. https://doi.org/s41598-024-70315-8
16.   Law B, Post P, McCullagh P. Modeling in sport and performance.Oxford Research Encyclopedia of Psychology. 2017. https://doi.org/10.1093/acrefore/9780190236557.013.159  
17.   Dowrick PW. Self modeling: Expanding the theories of learning. Psychology in the Schools. 2012;49(1):30-41. https://doi.org/10.1002/pits.20613
18.   Ste-Marie DM, Vertes K, Rymal AM, Martini R. Feedforward self-modeling enhances skill acquisition in children learning trampoline skills. Frontiers in Psychology. 2011;2:155.  https://doi.org/10.3389/fpsyg.2011.00155
19.   Rymal AM, Ste-Marie DM. Imagery ability moderates the effectiveness of video self modeling on gymnastics performance. Journal of Applied Sport Psychology. 2017;29(3):304-22. https://doi.org/10.1080/10413200.2016.1242515
20.   Frank C, Hülsmann F, Waltemate T, Wright D, Eaves D, Bruton A, et al. Combined action observation and motor imagery in virtual reality. On watching and imagining oneself at a level that one has not yet achieved. Building the Future of Sport and Exercise Psychology. 2019. https://pub.uni-bielefeld.de/record/2933833
21.   McNeill E, Toth AJ, Ramsbottom N, Campbell MJ. vSelf-modelled versus skilled-peer modelled AO+ MI effects on skilled sensorimotor performance: a stage 2 registered report. Psychology of Sport and Exercise. 2021;54:101910. https://doi.org/10.1016/j.psychsport.2021.101910
22.   Rohbanfard H, Proteau L. Learning through observation: a combination of expert and novice models favors learning. Experimental Brain Research. 2011;215:183-97. https://doi.org/10.1007/s00221-011-2882-x
23.   Behrendt F, Zumbrunnen V, Brem L, Suica Z, Gäumann S, Ziller C, et al. Effect of motor imagery training on motor learning in children and adolescents: a systematic review and meta-analysis. International Journal of Environmental Research and Public Health. 2021;18(18):9467. https://doi.org/10.3390/ijerph18189467
24.   Scott MW, Emerson JR, Dixon J, Tayler MA, Eaves DL. Motor imagery during action observation enhances automatic imitation in children with and without developmental coordination disorder. Journal of Experimental Child Psychology. 2019;183:242-60. https://doi.org/10.1016/j.jecp.2019.03.001
25.   Romano-Smith S, Roberts J, Wood G, Coyles G, Wakefield C. Simultaneous and alternate combinations of action-observation and motor imagery involve a common lower-level sensorimotor process. Psychology of Sport and Exercise. 2022;63:102275. https://doi.org/10.1016/j.psychsport.2022.102275
26.   Aoyama T, Kaneko F, Kohno Y. Motor imagery combined with action observation training optimized for individual motor skills further improves motor skills close to a plateau. Human Movement Science. 2020;73:102683. https://doi.org/10.1016/j.humov.2020.102683
27.   Bryant J, Bates AJ. Creating a constructivist online instructional environment. TechTrends. 2015;59:17-22. https://doi.org/10.1007/s11528-015-0834-1 
28.   Martini R, Carter MJ, Yoxon E, Cumming J, Ste-Marie DM. Development and validation of the Movement Imagery Questionnaire for Children (MIQ-C). Psychology of Sport and Exercise. 2016;22:190-201. https://doi.org/10.1016/j.psychsport.2015.08.008
29.   Goginsky AM, Collins D. Research design and mental practice. Journal of Sports Sciences. 1996;14(5):381-92. https://doi.org/10.1080/02640419608727725
30.   Bandura A. Guide for constructing self-efficacy scales. Self-efficacy Beliefs of Adolescents. 2006;5(1):307-37.
31.   Wulf G, Raupach M, Pfeiffer F. (2005). Self-controlled observational practice enhances learning. Research quarterly for exercise and sport. 2005;76(1):107-11. https://doi.org/10.1080/02701367.2005.10599266
32.   Smith D, Wright CJ, Cantwell C. Beating the bunker: the effect of PETTLEP imagery on golf bunker shot performance. Research Quarterly for Exercise and Sport. 2008;79(3):385-91. https://doi.org/10.1080/02701367.2008.10599502
33.   Holmes PS, Collins DJ. The PETTLEP approach to motor imagery: a functional equivalence model for sport psychologists. Journal of Applied Sport Psychology. 2001;13(1):60-83. https://doi.org/10.1080/10413200109339004
34.   England A, Brusseau T, Burns R, Koester D, Newton M, Thiese M, et al. The cognitive structure of the basketball free throw in adolescent physical education students. Motor Control. 2019;23(4):472-84. https://doi.org/10.1123/mc.2018-0035
35.   Binks JA, Emerson JR, Scott MW, Wilson C, Van Schaik P, Eaves DL. Enhancing upper-limb neurorehabilitation in chronic stroke survivors using combined action observation and motor imagery therapy. Frontiers in Neurology. 2023;14:1097422. https://doi.org/10.3389/fneur.2023.1097422
36.   Taube W, Lorch M, Zeiter S, Keller M. Non-physical practice improves task performance in an unstable, perturbed environment: motor imagery and observational balance training. Frontiers in Human Neuroscience. 2014;8:972. https://doi.org/10.3389/fnhum.2014.00972
37.   Mohammadifard M, RafeiBoroujeni M. The effect of simultaneous and alternate action observation and motor imagery combinations on the learning of badminton short serve in children. International Journal of Sport and Exercise Psychology. 2024;22(5):1194-208. https://doi.org/10.1080/1612197X.2023.2199747
 
38.   Frank C, Bekemeier K, Menze-Sonneck A. Imagery training in school-based physical education improves the performance and the mental representation of a complex action in comprehensive school students. Psychology of Sport and Exercise. 2021;56:101972. https://doi.org/10.1016/j.psychsport.2021.101972
39.   Grilc N, Valappil AC, Tillin NA, Mian OS, Wright DJ, Holmes PS, et al. Motor imagery drives the effects of combined action observation and motor imagery on corticospinal excitability for coordinative lower-limb actions. Scientific Reports. 2024;14(1):13057.
40.   Marshall B, Wright DJ, Holmes PS, Wood G. Combining action observation and motor imagery improves eye–hand coordination during novel visuomotor task performance. Journal of Motor Behavior. 2020. https://doi.org/10.1080/00222895.2019.1626337
41.   Wright DJ, Wood G, Eaves DL, Bruton AM, Frank C, Franklin ZC. Corticospinal excitability is facilitated by combined action observation and motor imagery of a basketball free throw. Psychology of Sport and Exercise. 2018;39:114-21. https://doi.org/10.1016/j.psychsport.2018.08.006
42.   Sun Y, Wei W, Luo Z, Gan H, Hu X. Improving motor imagery practice with synchronous action observation in stroke patients. Topics in Stroke Rehabilitation. 2016;23(4):245-53. https://doi.org/10.1080/10749357.2016.1141472
43.   Lin C-H, Lu FJ, Gill DL, Huang KS-K, Wu S-C, Chiu Y-H. Combinations of action observation and motor imagery on golf putting’s performance. PeerJ. 2022;10:e13432. https://doi.org/10.7717/peerj.13432
44.   Di Rienzo F, Joassy P, Kanthack T, MacIntyre TE, Debarnot U, Blache Y, et al. Effects of action observation and action observation combined with motor imagery on maximal isometric strength. Neuroscience. 2019;418:82-95. https://doi.org/10.1016/j.neuroscience.2019.08.025
45.   McNeill E, Toth AJ, Harrison AJ, Campbell MJ. Cognitive to physical performance: a conceptual model for the role of motor simulation in performance. International Review of Sportand Exercise Psychology. 2020;13(1):205-30. https://doi.org/10.1080/1750984X.2019.1689573
46.   Anderson R, Campbell MJ. Accelerating skill acquisition in rowing using self-based observational learning and expert modelling during performance. International Journal of Sports Science & Coaching. 2015;10(2-3):425-37. https://doi.org/10.1260/1747-9541.10.2-3.425
47.   Shearer DA, Leeworthy S, Jones S, Rickards E, Blake M, Heirene RM, et alThere is an “eye” in team: Exploring the interplay between emotion, gaze behavior, and collective efficacy in team sport settings. Frontiers in Sports and Active Living. 2020;2:18. https://doi.org/10.3389/fspor.2020.00018
48.   Wulf G, Mornell A. Insights about practice from the perspective of motor learning: a review. Music Performance Research. 2008;2:1-25.
49.   Bandura A. Self-efficacy: the exercise of control. Freeman; 1997.
50.   Clark SE, Ste-Marie DM. The impact of self-as-a-model interventions on children's self-regulation of learning and swimming performance. Journal of Sports Sciences. 2007;25(5):577-86. https://doi.org/10.1080/02640410600947090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
دوره 17، شماره 62
زمستان 1404
صفحه 17-38

  • تاریخ دریافت 04 بهمن 1403
  • تاریخ بازنگری 22 تیر 1404
  • تاریخ پذیرش 01 مرداد 1404