تأثیر اجرای جسمانی، مشاهده عمل و تصویرسازی حرکتی بر دقت و درجات آزادی کارکردی ضربه گلف: نقش تعدیل‌کننده بازخورد

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شیراز، شیراز، ایران

چکیده
هدف این پژوهش بررسی تأثیر اجرای جسمانی، مشاهده عمل و تصویرسازی حرکتی بر یادگیری و درجات آزادی کارکردی ضربه گلف بود، بر این اساس، 40 دانشجوی مبتدی مرد راست‌دست (4/3±25 سال) در این پژوهش شرکت کردند و به صورت تصادفی در چهار گروه تمرین جسمانی، مشاهده عمل، تمرین ذهنی و کنترل تقسیم شدند. ابتدا از شرکت­کنندگان خواسته شد که یک پیش­آزمون شامل 12 کوشش را تکمیل کنند. بعد از پیش‌آزمون، شرکت­کنندگان ضربه گلف را براساس گروه‌بندی‌های مربوط (9 بلوک 18 کوششی) تمرین کردند. یک روز پس از اکتساب، آزمون یادداری مشابه با پیش­آزمون اجرا شد. متغیرهای دقت حرکت و کینماتیک حرکت در مراحل پیش­آزمون و پس­آزمون ثبت شدند. با استفاده از روش تجزیه و تحلیل مؤلفه­های اصلی، درجات آزادی کارکردی اندازه­گیری شدند. به‌منظور تحلیل داده­ها از طرح تحلیل واریانس مرکب با 4 (گروه) × 2 (مراحل آزمون) استفاده شد. نتایج متغیر دقت حرکت نشان داد، گروه تمرین جسمانی در یادداری نسبت به دو گروه تجربی دیگر عملکرد سطح بالاتری داشت (همه 05/0>P). همچنین گروه مشاهده­ای نسبت به گروه ذهنی دقت بیشتری داشت (05/0>P). این نتایج در متغیر درجات آزادی کارکردی تکرار شد و گروه جسمانی بهتر از دو گروه تجربی دیگر عمل کرد (همه 05/0>P). همچنین گروه مشاهده­ای نسبت به گروه ذهنی درجات آزادی کارکردی کمتری داشت (05/0>P). این نتایج براساس ماهیت متفاوت بازخورد در این سه حالت اجرا و همچنین براساس تئوری مدل­های درونی توجیه شدند

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Observation, and Motor Imagery on Accuracy and Functional Degrees of Freedom of Golf Put: The Modulating Effect of Feedback

نویسندگان English

Davoud Fazeli
Fatemeh Jabbari
Hossein Taghizadeh
Leila Ghohestani
, Department of Sports Sciences, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
چکیده English

Background and Purpose
Motor learning can occur through various practice modalities such as physical execution, action observation, and motor imagery. According to the simulation theory, these methods engage similar neural mechanisms and activate overlapping brain regions, suggesting a shared basis for skill acquisition. While several neurophysiological and behavioral studies have supported this claim, there is also evidence indicating distinct underlying mechanisms for these methods.
Despite extensive research on movement outcomes, few studies have examined the effects of these practice methods on coordination-related variables such as functional degrees of freedom (fDOF). fDOF reflects the flexibility and synergistic structure of neuromuscular coordination and can be quantified using techniques like principal component analysis.
This study investigates whether physical practice, action observation, and motor imagery similarly affect movement accuracy and fDOF during a golf putting task. Exploring these effects may clarify the extent to which these methods share underlying mechanisms and inform the development of optimized training protocols.
 
Methods
This semi-experimental study used a pretest–posttest design with four groups: physical practice, motor imagery, action observation, and control. Forty right-handed male university students (mean age = 25 ± 3.4 years) with normal or corrected-to-normal vision participated. Participants were randomly assigned to groups. The experimental task was golf putting on a 4×9 m artificial green using a standard club and ball. The target was a 4 cm diameter circle fixed to the green.
After signing consent forms, participants completed a revised Movement Imagery Questionnaire. Seventeen reflective markers were placed bilaterally on key anatomical points. Each participant performed 12 trials aiming at a target 2.44 meters away. Kinematic data were captured with a six-camera SIMI motion analysis system at 200 Hz sample rate. Participants wore tight black clothing to improve marker visibility.
During acquisition, each group completed 162 practice trials across nine blocks (18 trials per block, 2-minute rest between blocks). The physical practice group performed actual strokes without verbal or visual feedback. The action observation group watched videos of matched physical participants. The motor imagery group imagined each putt while holding the club at the start position and verbally confirmed each trial. The control group did not train but read an article on exercise benefits during the same period.
Twenty-four hours later, all participants completed a retention test identical to the pretest. Putting accuracy was assessed by measuring radial error—the distance between the ball’s edge and the target. Kinematic data were filtered with a 4th-order Butterworth filter (7 Hz cutoff frequency), then standardized (Z-scores). Principal component analysis (PCA) on 54 variables (X, Y, Z coordinates of 18 markers) was used to estimate functional degrees of freedom (fDOF).
A 4 (Group) × 2 (Test Phase) mixed-design ANOVA was used to analyze both accuracy and kinematic data. All statistical analyses were performed using SPSS version 16, with the significance level set at p < 0.05.
 
Results
The analysis of participants’ imagery ability (both visual and kinesthetic dimensions) revealed no significant differences between groups, indicating homogeneity in baseline mental imagery skills (all F < 1).
Regarding putting accuracy, results from the 4 (Group) × 2 (Test Phase) mixed ANOVA indicated significant main effects of Group (F(3,36) = 19.78, p <.001, η²p = 0.62), Test Phase (F(1,36) = 102.36, p < 0.001, η²p = 0.74), and their interaction (F(3,36) = 18.57, p < 0.001, η²p = 0.60). Post hoc comparisons showed no significant differences between groups at the pretest phase (p = 0.98), whereas all pairwise comparisons at the posttest were significant (all p < 0.05). In terms of accuracy, performance ranked from best to worst as follows: Physical (M = 20.13), Observation (M = 26.39), Imagery (M = 29.52), and Control (M = 36.23). Significant improvements from pretest to posttest were observed in all groups except the control group (p = 0.81), indicating the effectiveness of all three training methods, particularly physical and observational practice.
For functional degrees of freedom (fDOF), the ANOVA revealed significant main effects for Group (F(3,36) = 3.03, p = 0.05, η²p = 0.21), Test Phase (F (1,36) = 8.72, p = 0.005, η²p = 0.19), and their interaction (F(3,36) = 5.76, p = 0.003, η²p = 0.32). There were no significant group differences at pretest (p = 0.94), but during the posttest, the physical practice group showed significantly lower fDOF than all other groups (all p < 0.05), and the observation group showed significantly lower fDOF than both the imagery and control groups (all p < 0.05). No significant difference was found between the imagery and control groups (p = 0.08). Mean posttest fDOF values were: Physical = 4.66, Observation = 5.16, Control = 5.72, Imagery = 6.06. Furthermore, significant within-group reductions in fDOF from pretest to posttest were observed in the physical and observation groups (both p < 0.05), but not in the imagery or control groups. These findings suggest that physical and observational training were more effective in enhancing coordination and reducing movement redundancy.
 
Conclusion
The results demonstrated that while all experimental groups improved in accuracy from pretest to posttest, physical practice yielded the highest performance, followed by action observation and motor imagery. Functional degrees of freedom (fDOF) decreased significantly only in the physical and observation groups, indicating more efficient movement coordination. These findings suggest that the three practice methods may rely on distinct underlying mechanisms. Based on internal model theory (32), motor imagery may lack effective sensory feedback integration, leading to less precise motor tuning. In contrast, action observation allows visual feedback but still lacks proprioceptive engagement, resulting in intermediate effectiveness. Physical practice, combining both feedback modalities, produced the most efficient learning. The results align with models emphasizing error correction and feedback-based adaptation (30,35-37). Future research should manipulate feedback availability directly and include EEG or coordination metrics to further explore neural and behavioral mechanisms. Overall, combining these methods may optimize motor learning depending on task demands.
 
Article Message
This study highlights the differential effectiveness of physical execution, action observation, and motor imagery in motor learning. While all three methods improved performance, physical practice showed superior outcomes in both accuracy and movement coordination. Action observation ranked second, outperforming motor imagery. Functional degrees of freedom analysis revealed more efficient neuromuscular control in the physical and observational groups. These results suggest that feedback availability and sensory engagement are critical for optimizing internal model updating. The findings support using combined or complementary practice strategies based on task complexity, offering practical implications for motor learning and rehabilitation interventions.
Ethical Considerations
This study was reviewed and approved by the Ethics Committee of Shiraz University.
Authors’ Contributions

Conceptualization: Davoud Fazeli
Data Collection: Davoud Fazeli, Fatemeh Jabbari, Hossein Taghizadeh, Leila Ghohestani
Data Analysis: Davoud Fazeli, Fatemeh Jabbari, Hossein Taghizadeh, Leila Ghohestani
Manuscript Writing: Davoud Fazeli, Fatemeh Jabbari, Hossein Taghizadeh, Leila Ghohestani
Review and Editing: Davoud Fazeli, Fatemeh Jabbari, Hossein Taghizadeh, Leila Ghohestani
Responsible for funding: None declared
Literature Review: Davoud Fazeli, Fatemeh Jabbari, Hossein Taghizadeh, Leila Ghohestani
Project Manager: Davoud Fazeli
Any Other Contributions: None

Conflict of Interest
The authors declare no conflict of interest related to the publication of this article.
 
Acknowledgments
The authors express their sincere gratitude to the participants whose cooperation made this research possible.

کلیدواژه‌ها English

Synergy, Internal Models, Feedback, Emulation
 
1.     Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage. 2001;14(1 Pt 2): S103-9. https://doi.org/10.1006/nimg.2001.0832 Macuga KL, Frey SH. Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. Neuroimage. 2012;59(3):2798-807. https://doi.org/10.1016/j.neuroimage.2011.09.083
2.     Guillot A, Lebon F, Rouffet D, Champely S, Doyon J, Collet C. Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol. 2007;66(1):18-27. https://doi.org/10.1016/j.ijpsycho.2007.05.009
3.     Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169-92. https://doi.org/10.1146/annurev.neuro.27.070203.144230
4.     Decety J, Jeannerod M. Mentally simulated movements in virtual reality: does Fitts's law hold in motor imagery? Behav Brain Res. 1995;72(1-2):127-34. https://doi.org/10.1016/0166-4328(96)00141-6
5.     Grosjean M, Shiffrar M, Knoblich G. Fitts's law holds for action perception. Psychol Sci. 2007;18(2):95-9. https://doi.org/10.1111/j.1467-9280.2007.01854.x
6.     Krigolson O, Van Gyn G, Tremblay L, Heath M. Is there "feedback" during visual imagery? Evidence from a specificity of practice paradigm. Can J Exp Psychol. 2006;60(1):24-32. https://doi.org/10.1037/cjep2006004
7.     Dahm SF, Rieger M. Is imagery better than reality? Performance in imagined dart throwing. Hum Mov Sci. 2019;66:38-52. https://doi.org/10.1016/j.humov.2019.03.005
8.     Kilteni K, Andersson BJ, Houborg C, Ehrsson HH. Motor imagery involves predicting the sensory consequences of the imagined movement. Nat Commun. 2018;9(1):1617. https://doi.org/10.1038/s41467-018-03989-0
9.     Calmels C, Holmes P, Lopez E, Naman V. Chronometric comparison of actual and imaged complex movement patterns. J Mot Behav. 2006;38(5):339-48. https://doi.org/10.3200/JMBR.38.5.339-348
10.   Coelho CJ, Nusbaum HC, Rosenbaum DA, Fenn KM. Imagined actions aren't just weak actions: task variability promotes skill learning in physical practice but not in mental practice. J Exp Psychol Learn Mem Cogn. 2012;38(6):1759-64. https://doi.org/10.1037/a0028065
11.   Kelly SW, Burton AM, Riedel B, Lynch E. Sequence learning by action and observation: Evidence for separate mechanisms. Br J Psychol. 2003;94(Pt 3):355-72. https://doi.org/10.1348/000712603767876271
12.   Larssen BC, Ong NT, Hodges NJ. Watch and learn: seeing is better than doing when acquiring consecutive motor tasks. PLoS One. 2012;7(6):e38938. https://doi.org/10.1371/journal.pone.0038938
13.   Ong NT, Hodges NJ. Absence of after-effects for observers after watching a visuomotor adaptation. Exp Brain Res. 2010;205(3):325-34. https://doi.org/10.1007/s00221-010-2366-4
14.   Ong NT, Larssen BC, Hodges NJ. In the absence of physical practice, observation and imagery do not result in updating of internal models for aiming. Exp Brain Res. 2012;218(1):9-19. https://doi.org/10.1007/s00221-011-2996-1
15.   Fazeli D, Taheri H, Kakhki AS. Utilizing the variability of practice in physical execution, action observation, and motor imagery: similar or dissimilar mechanisms? Motor Control. 2021;25(2):198-210. https://doi.org/10.1123/mc.2020-0020
16.   Maycock J, Bläsing B, Bockemühl T, Ritter H, Schack T. Motor synergies and object representations in virtual and real grasping. In: 1st International Conference on Applied Bionics and Biomechanics (ICABB); 2010. pp.1-8.
17.   Mohammed Suberi NA, Razman R, Callow N. Does imagery facilitate a reduction in movement variability in a targeting task? In: International Conference on Movement, Health and Exercise. Springer; 2016. https://doi.org/10.1007/978-981-10-3737-5_31
18.   Fazeli D, Taheri H, Saberi Kakhki A, Shakeri Chenari F. Effect of physical and mental practice on variability of movement coordination and smoothness. Motor Behavior, 2023. https://doi.org/10.22089/mbj.2023.13689.2059 [In Persian].
19.   Li ZM. Functional degrees of freedom. Motor Control. 2006;10(4):301-10. 10.1123/mcj.10.4.301
20.   Chen HH, Liu YT, Mayer-Kress G, Newell KM. Learning the pedalo locomotion task. J Mot Behav. 2005;37(3):247–56. https://doi.org/10.3200/JMBR.37.3.247-256     
21.   Deng N, Soh KG, Abdullah BB, Huang D. Does motor imagery training improve service performance in tennis players? A systematic review and meta-analysis. Behav Sci (Basel). 2024;14(3):207. https://doi.org/10.3390/bs14030207
22.   Pierella C, Casadio M, Mussa-Ivaldi FA, Solla SA. The dynamics of motor learning through the formation of internal models. PLoS Comput Biol. 2019;15(12):e1007118. https://doi.org/10.1371/journal.pcbi.1007118 Fazeli D, Taghizadeh H, Jabbari F, Ghohestani L. Addressing Mechanisms of Physical Performance, Action Observation and Mental Practice Using Manipulation of Feedback: a Kinematics Study. Journal of Sports and Motor Development and Learning. 2024. https://doi.org/10.22059/jsmdl.2024.379355.1791 [In Persian].
23.   Sohrabi, M., Farsi, A., & Fouladian, J. (2010). Validation of the Iranian translation of the movement imagery questionnaire revised. Journal of Studies in Sport Sciences, 5(1), 13-24. [In Persian].
24.   O'Dwyer N, Rattanaprasert U, Smith R. Quantification of coordination in human walking. From Basic Motor Control to Functional Recovery II. Sofia: Academic Publishing House. 2001. pp. 107-19.
25.   Frank C, Land WM, Popp C, Schack T. Mental representation and mental practice: experimental investigation on the functional links between motor memory and motor imagery. PLoS One. 2014;9(4):e95175. https://doi.org/10.1371/journal.pone.0095175
26.   Moradi N, Fazeli D. Investigation of effect of routine introduction, imagery and mixed methods on performance and mental representation of volleyball overhand float-serve. Sport Psychology Studies. 2017;6(20):149-68. https://doi.org/10.22089/spsyj.2017.4184.1435  [In Persian].
27.   Holmes P, Calmels C. A neuroscientific review of imagery and observation use in sport. J Mot Behav. 2008;40(5):433-45. https://doi.org/10.3200/JMBR.40.5.433-445
28.   Grush R. The emulation theory of representation: Motor control, imagery, and perception. Behav Brain Sci. 2004;27(3):377-96. https://doi.org/10.1017/s0140525x04000093
29.   Frank C, Land WM, Schack T. Mental representation and learning: The influence of practice on the development of mental representation structure in complex action. Psychol Sport Exerc. 2013;14(3):353-361. https://doi.org/10.1016/j.psychsport.2012.12.001
30.   Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science. 1995;269(5232):1880-2. https://doi.org/10.1126/science.7569931
31.   Wolpert DM, Flanagan JR. Motor prediction. Curr Biol. 2001;11(18):R729-32. https://doi.org/10.1016/s0960-9822(01)00432-8
32.   Wolpert DM, Doya K, Kawato M. A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci. 2003;358(1431):593-602. https://doi.org/10.1098/rstb.2002.1238
33.   Gentili R, Han CE, Schweighofer N, Papaxanthis C. Motor learning without doing: trial-by-trial improvement in motor performance during mental training. J Neurophysiol. 2010;104(2):774-83. https://doi.org/10.1152/jn.00257.2010
34.   Gatti R, Tettamanti A, Gough PM, Riboldi E, Marinoni L, Buccino G. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study. Neurosci Lett. 2013;540:37-42. https://doi.org/10.1016/j.neulet.2012.11.039
35.   Kim T, Frank C, Schack T. A systematic investigation of the effect of action observation training and motor imagery training on the development of mental representation structure and skill performance. Front Hum Neurosci. 2017 ;11:499. https://doi.org/10.3389/fnhum.2017.00499
36.   Mattar AA, Gribble PL. Motor learning by observing. Neuron. 2005;46(1):153-60. https://doi.org/10.1016/j.neuron.2005.02.009
37.   Roberts JW, Bennett SJ, Elliott D, Hayes SJ. Top-down and bottom-up processes during observation: Implications for motor learning. Eur J Sport Sci. 2014;14 Suppl 1:S250-6. https://doi.org/10.1080/17461391.2012.686063
38.   Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11(7-8):1317-29. https://doi.org/10.1016/s0893-6080(98)00066-5
دوره 17، شماره 62
زمستان 1404
صفحه 93-110

  • تاریخ دریافت 02 اردیبهشت 1403
  • تاریخ بازنگری 28 تیر 1404
  • تاریخ پذیرش 01 مرداد 1404