بررسی مؤلفه‌های ردیابی بینایی و میزان خطای فضایی و زمانی در تکلیف هدف‌گیری دوطرفه با دست برتر و غیربرتر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد رفتار حرکتی، دانشکدة علوم ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 دانشیار رفتار حرکتی، دانشکدة علوم ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 مربی رفتار حرکتی، دانشکدة علوم ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

پژوهش حاضر با هدف بررسی مؤلفه­های ردیابی بینایی و میزان خطای فضایی و زمانی در تکلیف هدف‌گیری دوطرفه با دست برتر و غیربرتر، انجام شد. شرکت‌کنندگان در پژوهش 17 دانشجوی راست‌دست در ردة سنی ۱۹ تا ۲۲ بودند. آن‌ها تکلیف ضربه‌زنی دوطرفه را در هشت شرایط متفاوت یعنی دو دشواری زمانی و دو دشواری فضایی با دست برتر و غیربرتر با استفاده از دستگاه سنجش مبادلة سرعت-دقت با ریتم مترونوم شنیداری انجام دادند. پهنای مؤثر هدف و خطای زمان‌بندی ضربات ارزیابی و مقایسه شد. رفتار جست‌وجوی بینایی نیز شامل تعداد، مدت‌زمان و نرخ تثبیت‌ها با استفاده از سیستم ردیابی بینایی دوچشمی ارزیابی شد. برای تحلیل آماری داده‌ها از آزمون تحلیل واریانس درون‌گروهی و فریدمن استفاده شد. نتایج نشان داد در پهنای مؤثر هدف (We) بین تکلیف آسان با دشوار و اندام برتر با غیربرتر، تفاوت وجود نداشت، اما بین تکلیف آسان و دشوار از نظر زمانی تفاوت وجود داشت. خطای زمان‌بندی در دست غیربرتر، حرکت دشوار و سریع خطاها بیشتر بود. همچنین تغییر در دشواری فضایی، دشواری زمانی و اندام بر تعداد و زمان تثبیت‌های بینایی تأثیر معنادار نداشت، ولی بر نرخ تثبیت‌های بینایی معنادار بود؛ به‌طوری‌که میانگین نرخ تثبیت‌ها در اجرا با دست غیربرتر از دست برتر بیشتر بود. به‌طورکلی، در تکالیف مداوم ضربه‌زنیِ سریع، خطاهای زمانی بیش از خطاهای فضایی تحت‌تأثیر دشواری تکلیف و برتریِ دستی قرار می‌گیرند و هنگام اجرای تکلیف با دست برتر مدت ‌زمان کمتری صرف خیره‌شدن بر هدف می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Investigate the Components of Visual Tracking and the Amount of Spatial and Temporal Error in the Bilateral Targeting Task with Dominant and Non-Dominant Hands

نویسندگان [English]

  • Sareh Gholami 1
  • Seyedeh Nahid Shetab Boushehri 2
  • Mohammad Reza Doustan 3
1 M.Sc. Student of Motor Behavior, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Associate professor of Motor Behavior, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Instructor of Motor Behavior, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

The purpose of this study was to investigate the components of visual tracking and spatial and temporal error in the bilateral targeting task in the dominant and non-dominant hand. The participants in the study were 17 right-handed students in the age range of 19-22. They performed the bilateral targeting taskin eight different situations, two temporal difficulties and two spatial difficulties with dominant and non-dominant hands, using a speed-accuracy trade off apparatus with auditory metronome rhythm. The effective target width and timing error were evaluated and compared. Visual searching behavior including number, duration and rate of fixations was also assessed using Binocular Vision Tracking system. The results showed that the effective width of the target, there was no difference between easy task and difficult as well as dominant and non-dominant task, but there was a difference between easy and difficult task in terms of time. There were more errors in the non-dominant hand, the difficult and fast movement. Also, the change in spatial difficulty, temporal and limb difficulty did not have a significant effect on the number and time of visual fixations, but was significant on the rate of visual fixations, so that the average rate of fixations was higher in the non-dominant hand than in the dominant hand. In general, in fast continuous aiming task, timing errors are more affected by the difficulty of the task and hand-dominancy than spatial errors, and less time is spent staring at the target when performing the task with the dominant hand.

کلیدواژه‌ها [English]

  • Visual fixation
  • speed-accuracy trade off
  • effective target width
  • Handedness
  • spatial and temporal difficulty
  1. Schmidt RA, Lee TD. Motor learning and performance: From principles to application. 5th éd. Champaign, IL: Human Kinetics; 2014. 203-5.
  2. Rozand V, Lebon F, Papaxanthis C, Lepers R. Effect of mental fatigue on speed–accuracy trade-off. Neuroscience. 2015;297:219-30.
  3. Bogacz R, Wagenmakers EJ, Forstmann BU, Nieuwenhuis S. The neural basis of the speed-accuracy tradeoff. Trends in Neurosciences. 2009;33(1):10-6.
  4. Heitz RP. The speed-accuracy tradeoff: history, physiology, methodology, and behavior. Frontiers in Neuroscience. 2014;8:150. 1-19.
  5. Shadmehr R, De Xivry JJ, Xu-Wilson M, Shih TY. Temporal discounting of reward and the cost of time in motor control. Journal of Neuroscience. 2010;30(31):10507-16.
  6.  Rigoux L, Guigon E. A model of reward-and effort-based optimal decision making and motor control. PLoS Comput Biol. 2012;8(10):1002716.
  7. Young WB, Bilby GE. The effect of voluntary effort to influence speed of contraction on strength, muscular power, and hypertrophy development. The Journal of Strength & Conditioning Research. 1993;7(3):172-8.
  8. Green L, Myerson J. A discounting framework for choice with delayed and probabilistic rewards. Psychological bulletin. 2004;130(5):769-94.
  9. Asai T, Sugimori E, Tanno Y. Two agents in the brain: Motor control of unimanual and bimanual reaching movements. PloS One. 2010;5(4):10086.
  10. Stöckel T, Weigelt M. Brain lateralisation and motor learning: Selective effects of dominant and non-dominant hand practice on the early acquisition of throwing skills. Laterality: Asymmetries of Body, Brain and Cognition. 2012;17(1):18-37.
  11. Latash M L. Neurophysiological Basis of Movement. 2nd ed. Human Kinetics. 2008. 111-5.
  12. Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature. 1998;394(6695):780-4.
  13. Lunardini F, Bertucco M, Casellato C, Bhanpuri N, Pedrocchi A, Sanger TD. Speed-accuracy trade-off in a trajectory-constrained self-feeding task: a quantitative index of unsuppressed motor noise in children with dystonia. Journal of Child Neurology. 2015;30(12):1676-85.
  14. Hüttermann S, Noël B, Memmert D. Eye tracking in high-performance sports: Evaluation of its application in expert athletes. International Journal of Computer Science in Sport. 2018;17(2):182-203.
    1. Williams AM, Ward P, Smeeton N. Perceptual and cognitive expertise in sport: Implications for skill acquisition and performance enhancement. In: Skill acquisition in sport: Research, theory and practice. London: Routledge; 2004. 328-48.
  15. Vickers JN. Perception, cognition, and decision training: The quiet eye in action. United States: Human Kinetics; PO.Box 5076. 2007. 57-8.
  16. Abernethy B. Attention. In: Singer NR, Hausenblas HA, Janelle CM, editors. Handbook of sport psychology. 2nd ed. New York: Wiley & Sons; 2011. 53-85.
  17. Williams AM, Davids K, Williams JG. Visual perception and action in sport. Taylor & Francis; 1999.
  18. Sharifi Z, Meshkati Z, Sadeghi E. The impact of prismatic adaptation of visual system on postural control and dart throwing precision. Motor Behavior. 2018;9(30):101-14. (In Persian).
  19. Hinder MR, Riek S, Tresilian JR, de Rugy A, Carson RG. Real-time error detection but not error correction drives automatic visuomotor adaptation. Experimental Brain Research. 2010;201(2):191-207.
  20. Harris CM, Wolpert DM. The main sequence of saccades optimizes speed-accuracy trade-off. Biological Cybernetics. 2006;95(1):21-9.
  21. Manohar SG, Muhammed K, Fallon SJ, Husain M. Motivation dynamically increases noise resistance by internal feedback during movement. Neuropsychologia. 2019;123:19-29.
  22.  Kellogg RT. Long-term working memory in text production. Memory & Cognition. 2001;29(1):43–52.
  23. Gorman AD, Abernethy B, Farrow D. Evidence of different underlying processes in pattern recall and decision-making. Quarterly Journal of Experimental Psychology. 2015;68(9):1813-31.
  24. Moeinirad S, Abdoli B, Farsi A, Ahmadi N. Comparing visual search behavior among the expert and nearexpert players in basketball jump shots: An Ex Post Facto Study. J Res Rehabil Sci. 2017;13(6):303-8.
  25. Oldfield RC (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9: 97-113.
  26. Alipour,A. Aliakbari,M. Imanifar H. Zeraatkar,E. A study of the effect of handedness, sex and age on the time perception. Journal of Cognitive Psychology. 2014;2(2): 18-26.
  27. Lai ML, Tsai MJ, Yang FY, Hsu CY, Liu TC, Lee SW, et al. A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational research review. 2013;10:90-115.
  28. Taghizade A, Aghakasiri Z. Eye-Tracking method’ usage for understanding the cognitive processes in multimedia learning. Bi-Quarterly Journal of Educational Studies NAMA. 2018;6(1):41-51. (In Persian).
  29. Itaguchi Y, Fukuzawa K. Influence of speed and accuracy constraints on motor learning for a trajectory-based movement. Journal of Motor Behavior. 2018;50(6):653-63.
  30. Schmidt RA, Zelaznik H, Hawkins B, Frank JS, Quinn Jr., J. T. Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Review. 1979;86(5):415–51.
  31. Zelaznik, H. N., Mone, S., McCabe, G. P., & Thaman, C. (1988). Role of temporal and spatial precision in determining the nature of the speed-accuracy trade-off in aimed-hand movements. Journal of Experimental Psychology: Human Perception and Performance, 14(2), 221–30.
  32. Fernani DCGL, Prado MTA, Silva TD, Massetti T, Abreu LC, Magalhães FH, et al. Evaluation of speedaccuracy trade-off in a computer task in individuals with cerebral palsy: A cross-sectional study. BMC Neurol. 2017;17(1):143.
  33. Plamondon R, Alimi AM. Speed/accuracy trade-offs in target-directed movements. Behavioral and Brain Sciences. 1997;20(2):279-303.
  34. Bakker M, De Lange FP, Stevens JA, Toni I, Bloem BR. Motor imagery of gait: A quantitative approach. Experimental Brain Research. 2007;179(3):497-504.
  35. Personnier P, Kubicki A, Laroche D, Papaxanthis C. Temporal features of imagined locomotion in normal aging. Neuroscience Letters. 2010;476(3):146-9.
  36. Kourtis D, Sebanz N, Knoblich G. EEG correlates of Fitts’s law during preparation for action. Psychological Research. 2012;76(4):514-24.
  37. Onagawa R, Shinya M, Ota K, Kudo K. Risk aversion in the adjustment of speed-accuracy tradeoff depending on time constraints. Scientific Reports. 2019;9(1):1-2.
  38. Izawa J, Shadmehr R. Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput Biol. 2011;7(3):1002012.
  39. Wolpert DM, Ghahramani Z, Flanagan JR. Perspectives and problems in motor learning. Trends in Cognitive Sciences. 2001;5(11):487-94.
  40. Parziale A, Senatore R, Marcelli A. Exploring speed–accuracy tradeoff in reaching movements: a neurocomputational model. Neural Computing and Applications. 2020:1-27.
  41. Abrams RA, Meyer DE, Kornblum S. Eye-hand coordination: Oculomotor control in rapid aimed limb movements. Journal of Experimental Psychology: Human Perception and Performance. 1990;16(2):248-67.
  42. Frens MA, Erkelens CJ. Coordination of hand movements and saccades: evidence for a common and a separate pathway. Experimental Brain Research. 1991;85(3):682-90.
  43. Bekkering H, Adam JJ, van den Aarssen A, Kingma H, Whiting HJ. Interference between saccadic eye and goal-directed hand movements. Experimental Brain Research. 1995;106(3):475-84.
  44. Helsen WF, Elliott D, Starkes JL, Ricker KL. Temporal and spatial coupling of point of gaze and hand movements in aiming. Journal of Motor Behavior. 1998;30(3):249-59.
  45. Lünenburger L, Kutz DF, Hoffmann KP. Influence of arm movements on saccades in humans. European Journal of Neuroscience. 2000;12(11):4107-16.
  46. Beaubaton D, Hay L. Contribution of visual information to feedforward and feedback processes in rapid pointing movements. Human Movement Science. 1986;5(1):19-34.
  47. Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences. 2000;4(11):423-31.
  48. Saunders JA, Knill DC. Humans use continuous visual feedback from the hand to control fast reaching movements. Experimental Brain Research. 2003;152(3):341-52.
  49. Thaler L, Goodale MA. The role of online visual feedback for the control of target directed and allocentric hand movements. Journal of Neurophysiology. 2011;105(2):846-59.
  50. Tchalenko J. Eye movements in drawing simple lines. Perception. 2007;36(8):1152-67.
  51. Sakazume Y, Furubayashi S, Miyashita E. Functional roles of saccades for a hand movement. Applied Sciences. 2020;10(9):1-2.
  52. Shirmehenji F, Namazizadeh M, Sheikh M, Rafiee S. The role of visual search behavior and the verbal report in anticipation skill of skilled and semi-skilled badminton players in smash hits. J Res Rehabil Sci. 2018;14(5):275-82.
  53.  Sainburg RL, Kalakanis D. Differences in control of limb dynamics during dominant and nondominant arm reaching. Journal of Neurophysiology. 2000;83(5):2661-75.
  54. Pigeon P, DiZio P, Lackner JR. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects. Journal of Neurophysiology. 2013;110(6):1370-84.
  55. Sainburg RL. Convergent models of handedness and brain lateralization. Frontiers in Psychology. 2014;5:1-14.
  56. Kilteni K, Andersson BJ, Houborg C, Ehrsson HH. Motor imagery involves predicting the sensory consequences of the imagined movement. Nature Communications. 2018;9(1):1-9.
  57. Gandrey P, Paizis C, Karathanasis V, Gueugneau N, Papaxanthis C. Dominant vs. nondominant arm advantage in mentally simulated actions in right handers. Journal of Neurophysiology. 2013;110(12):2887-94.
  58. Mathew J, Sarlegna FR, Bernier PM, Danion FR. Handedness matters for motor control but not for prediction. Eneuro. 2019, 6(3): 1–13.